THE APPLICATION OF ELECTRIC CONE PENETROMETER IN ESTIMATING DRIVEN PILE BEARING CAPACITY - A CASE HISTORY

Shaw-Wei Duann, Rei-Fung Wang and Chien-Hong Wang
THE APPLICATION OF ELECTRIC CONE PENETROMETER IN ESTIMATING DRIVEN PILE BEARING CAPACITY - A CASE HISTORY

ABSTRACT

Electric Cone Penetrometer has been used during two site investigations in southern and central coastal sites in Taiwan. Both sites consist of recent deposits of silty sand and sandy silt interbedded with silty clay as well as clayey silt. Prestressed Concrete (P.C.) piles and steel pipe piles were used in both sites. Many pile loading tests have been carried out. Several dynamic and static formula for estimating the pile bearing capacity were used for comparison of actual pile loading test results. After detailed analyses, it was found that the use of electric cone penetrometer can provide a good method to predict the bearing capacity of the driven pile.
電子錐在推估打撻式基樁承載力
上之應用—案例介紹

段紹輝** 王瑞芬* 王劍虹***

一、前言

圓錐貫入試驗係一種簡單、可靠且經濟的現場試驗。基本上，此項試驗係量測
壓入錐管時的阻力，藉此阻力可推估土壤
的緊密度、強度等，此錐管亦像小樁一樣
故可推估樁的承載力。當然，發展初期，
錐頭的種類、貫入的速率要求、方式等亦
不同，讀者有興趣可參考Sangerat (1972)
以及1974年在歐洲Stockholm舉行的歐洲
貫入試驗研討會專集。在衆多的錐頭型式
中，目前常被應用的是荷蘭錐(Dutch Cone)
，它是一個底面積為十平方分公，錐頭之
斜角為60度及貫入速率約1至2公分／秒
的錐頭。國內在幾十年來即有鋼樁初期
階段，便已有荷蘭錐被引入。於幾十年
前此荷蘭錐頭貫入試驗便被擴大應用於高
樓基礎調查、台北市政中心基地調查及基
隆河廢河道之地質調查等，不過上述之荷
蘭錐頭貫入試驗儀是機械式的。而國外自
1950年起便發展將機械式的貫入儀賦以電
子記覆裝置後可連載記錐貫入錐之摩擦力
和錐頭阻力 (機械式的只能每隔20公分之
貫入深度記覆一次) 即所謂的電子錐。國
內電子錐之發展，由台灣省政府交通處港
務技術研究所始於民國七十三年購入荷
蘭A.P.V.D. Berg公司所製造之電子錐，並
曾應用於雲林縣台西鄉的一處大型基地之
探查工作。其後亞新工程顧問公司於民國
七十五年率先購入美國Hogentogler公司的
電子錐，目前則中華工程公司、中興工程
顧問社、高雄工程服務公司以及亞技工程
顧問公司均各擁有一部美國Hogentogler公
司的電子錐，全台灣共有六部電子錐貫入
儀，而機械式的荷蘭錐貫入儀近年未有再
被使用。本文係就電子錐在台灣南部之實
測結果與試驗結果進行比對分析，由於土層資料及試驗資料相當完整，
因而可以確認其在推估打撻式基樁承載
力上的可行性。

二、南部基地土層概況

基地位於高雄縣沿海地區，地表為現
代沖積層所覆蓋，厚度至少有二百公尺，
主要由粉質細砂、砂質粉土、粘土質粉土
和粉質粘土間夾而成。本次研究於基地內
共配置了七個鑽探孔及十八處的電子錐試
驗，根據鑽探結果本基金在深度六十公尺
以上部份之土層分佈立體示意如圖一所示。
最上層為水力回填砂和自然沖積砂共厚
七公尺，具極疏鬆至中等緊密程度，標準
貫入試驗N值平均約為7；第二層為厚約
十三公尺之粉質粘土層，本層中間夾平均
厚度約二公尺，N值平均約14之疏鬆至中
圖一 基地立體剖面土層分佈示意圖
等緊密粉質細砂層，砂層上方為厚約七點五公尺，N值平均僅約為2之軟弱粉質粘土層，下方則為厚三點五公尺，N值平均為5之粉質粘土層；第三層為中等緊密至極緊密之粉質細砂層，平均厚度約三十七公尺，N值平均約38，砂層中夾有一至二層厚約一點五至四公尺之粉質粘土層，由於本層深厚，且於地表下深度約三十五公尺以下，可為樁基礎之良好承載層。本基
地簡化土層分佈及其工程特性參數如表一所列。

現場地面高程約＋3.7公尺地下水位由觀測記錄得知約在高程＋1.6公尺左右，但在高程－16公尺以下，即第三層粉質細砂層中之地下水壓雖呈直線變化，較地下水位基準之靜態水壓低3至4公尺，研判可能係因鄰近地區農業長期大量抽取地下水所致。

表一 南部基地簡化土層表

<table>
<thead>
<tr>
<th>水深 m</th>
<th>土層硬度說明</th>
<th>N值</th>
<th>(\gamma') t/m³</th>
<th>(S_v) t/m²</th>
<th>(C_v) t/m³</th>
<th>(\theta) deg</th>
<th>(E) kg/cm²</th>
<th>(C_r) cm²/sec</th>
<th>(m_s) cm²/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>＋1.6</td>
<td>粉質細砂</td>
<td>8</td>
<td>1.90</td>
<td>-</td>
<td>0</td>
<td>34.5</td>
<td>70</td>
<td>0.004</td>
<td>0.030</td>
</tr>
<tr>
<td>－3.0</td>
<td>粉質粘土</td>
<td>2</td>
<td>1.82</td>
<td>2.5</td>
<td>0</td>
<td>28.5</td>
<td>80</td>
<td>0.004</td>
<td>0.030</td>
</tr>
<tr>
<td>－10.5</td>
<td>粉質細砂</td>
<td>14</td>
<td>1.96</td>
<td>-</td>
<td>0</td>
<td>35.5</td>
<td>190</td>
<td>0.005</td>
<td>0.019</td>
</tr>
<tr>
<td>－12.0</td>
<td>粉質粘土</td>
<td>5</td>
<td>1.93</td>
<td>4.0</td>
<td>0</td>
<td>30.0</td>
<td>140</td>
<td>0.005</td>
<td>0.019</td>
</tr>
<tr>
<td>－17.0</td>
<td>粉質細砂</td>
<td>24</td>
<td>1.96</td>
<td>-</td>
<td>0</td>
<td>37.0</td>
<td>170</td>
<td>0.005</td>
<td>0.019</td>
</tr>
<tr>
<td>－23.0</td>
<td>粉質粘土</td>
<td>8</td>
<td>1.90</td>
<td>5.0</td>
<td>0</td>
<td>30.0</td>
<td>140</td>
<td>0.005</td>
<td>0.019</td>
</tr>
<tr>
<td>－26.0</td>
<td>粉質細砂</td>
<td>23</td>
<td>1.99</td>
<td>-</td>
<td>0</td>
<td>36.5</td>
<td>170</td>
<td>0.005</td>
<td>0.019</td>
</tr>
<tr>
<td>－29.0</td>
<td>粉質粘土</td>
<td>7</td>
<td>1.90</td>
<td>6.0</td>
<td>0</td>
<td>32.0</td>
<td>160</td>
<td>0.005</td>
<td>0.019</td>
</tr>
<tr>
<td>－31.0</td>
<td>粉質細砂</td>
<td>35</td>
<td>2.01</td>
<td>-</td>
<td>0</td>
<td>37.5</td>
<td>390</td>
<td>0.005</td>
<td>0.019</td>
</tr>
<tr>
<td>－38.0</td>
<td>粉質細砂</td>
<td>40</td>
<td>1.98</td>
<td>-</td>
<td>0</td>
<td>38.0</td>
<td>390</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>－44.0</td>
<td>粉質細砂</td>
<td>50</td>
<td>1.98</td>
<td>-</td>
<td>0</td>
<td>38.5</td>
<td>390</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>－51.0</td>
<td>粉質細砂</td>
<td>36</td>
<td>1.99</td>
<td>-</td>
<td>0</td>
<td>36.5</td>
<td>500</td>
<td>0.036</td>
<td>0.005</td>
</tr>
<tr>
<td>－53.0</td>
<td>粉質細砂</td>
<td>54</td>
<td>1.99</td>
<td>-</td>
<td>0</td>
<td>37.0</td>
<td>445</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>－92.0</td>
<td>粉質細砂</td>
<td>36</td>
<td>1.99</td>
<td>-</td>
<td>0</td>
<td>36.5</td>
<td>500</td>
<td>0.036</td>
<td>0.005</td>
</tr>
</tbody>
</table>

註：地表平均高程為EL＋3.7m。
三、南部基地基槽支承力試驗

本次基槽支承力試驗包括鋼管槽二支與預力混凝土槽三支，分五組進行。其中鋼管槽叒採用外徑60.9公分，壁厚1.2公分，長度36公尺之開口式基槽（TP4及TP6），並於壁內裝設應力應變計及樑尖位移計以瞭解基槽受力時摩擦力之分佈情形，基槽貫入土層中之長度為34.2公尺。預力混凝土槽叒採用外徑60公分，壁厚10公分，長度36公尺，混凝土壓縮強度為800公斤/平方公分之基槽（TP1，TP2及TP3），基槽貫入土層中之長度為35.5公尺。

打槽所用之樑頭無論鋼管槽或PC槽均為DELMAG D62型，試驗槽打設時利用打樑動力分析儀（Pile Driving Analyzer，簡稱PDA）進行打樑測試，並在打設完成後約10天再進行重打測試，並分別選擇測試所得之適當訊號進行CAPWAP程式比對分析，以獲得基槽初打及重打時之槽身摩擦力與基槽極限承載力。此外以常用之海利打樑公式（Polous及Davis，1980）所計算得之動態極限承載力亦併列於表二中供參考比較。

基樑載重試驗係參照ASTM D1143-81快速載重方式進行試驗。預力混凝土槽最大試驗荷重690噸，鋼管槽最大試驗荷重450噸，第一循環先以每階約30噸加載至極限荷重（或最大荷重）再分四階解回。第一循環試驗後，隔12小時以後進行第二循環。

由試樑結果推求基樑極限承載力的方法很多，本文僅以一般較常用且適合快速載重試驗結果之Davission（1973）方法進行評估。Davission方法係被常用且較其他詮釋方法保守（Fellenius，1980），此一方法之極限承載力定義為樑基沉陷量超過其彈性壓縮量某一特定值時之承載力，假設此一特定沉陷量為X，則

\[X = 0.15 \] (英呎) + \[B \] (英呎) / 120

其中B為樑之直徑。所推估而得之結果詳如表二所示。

表二 基樑極限承載力分析結果（南部工址）

<table>
<thead>
<tr>
<th>試驗槽編號</th>
<th>打樑公式 (Hiley) Qult</th>
<th>CAPWAP 初打</th>
<th>Qult</th>
<th>CAPWAP 重打</th>
<th>Qult</th>
<th>試樑結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>390</td>
<td>250</td>
<td>15</td>
<td>265</td>
<td>420</td>
<td>23</td>
</tr>
<tr>
<td>TP2</td>
<td>516</td>
<td>142</td>
<td>188</td>
<td>330</td>
<td>455</td>
<td>33</td>
</tr>
<tr>
<td>TP3</td>
<td>245</td>
<td>184</td>
<td>6</td>
<td>190</td>
<td>447</td>
<td>15</td>
</tr>
<tr>
<td>TP4</td>
<td>320</td>
<td>134</td>
<td>31</td>
<td>165</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TP6</td>
<td>265</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

注：Qult：樑頭極限摩擦力，Qult：樑尖極限阻抗，Qult：極限承載力，單位：噸
四、電子錐貫入試驗結果之應用—南部基地

電子錐貫入試驗時所受之土壤阻力行
為即如一小型基槽貫入土中，而應用電子錐貫入試驗貫入結果來推估基槽承載力方法甚
多，本文應用美國NAVFAC DM7.2（1982）
方法和Robertson & Campanella（1988）以十
三種方法在沖積性土壤中應用電子錐貫入試
驗推估打擊槽垂直承載力結果後所建議方

\[
\begin{align*}
\text{TIP RESISTANCE} & = Q_c \left(\text{MN/m}^2 \right) \\
\text{LOCAL FRICTION} & = f \left(\text{KN/m}^2 \right) \\
\text{FRICTION RATIO} & = R_f (\%) \\
\text{PORE PRESSURE} & = U/100\text{BAR}
\end{align*}
\]

注：1. N：標準貫入試驗打擊數
2. 粉質細砂
3. 粉質粘土

圖二 TP4 試驗槽鄰近之土層狀況
法中之 de Ruiter & Beringen (1979) 方法和 Bustamante & Gianeselli (1982) 之 LCPC (Laboratoire Central des Ponts et Chaussees) 並與試樁結果做一比較。

NAVFAC DM7.2 (1982) 方法在詳細打擊樁之樁尖阻抗(Qp) 和樁周摩擦力(Qa) 係直接採用樁頭阻抗(Qc) 和樁周摩擦力(Qs) 計算。de Ruiter & Beringen 方法在粘土層中係應用樁頭阻抗先推求粘土之不排水剪力強度再計算樁周之端點承載力和樁周摩擦力，在砂層中則可考慮直接採用樁頭摩擦抗阻抗值除以一固定係數計算樁周摩擦力惟給予上限值，並考慮樁尖下 0.7 至 4 倍樁徑和樁尖上 8 倍樁徑範圍內的樁頭阻抗計算基樁端點承載力。LCPC 方法則分類較細，對不同基樁種類、施工方法和不同樁頭阻抗強度之砂土及粘土依據研究統計結果分別給予不同計算係數和上限值，用以過濾較不具代表性的分散數據，來計算樁周摩擦力和樁尖阻抗。惟其計算僅應用樁頭阻抗，並不使用樁周摩擦力，關於計算係數和上限值請參考該文。此

![Diagram](image)

撰： 粉質細砂 | 粉質粘土

圖三 TP6. 試樁樁周之土層狀況
外，LCPC 方法在計算樁尖阻抗時應考慮樁尖上下各 1.5 倍樁徑範圍內之錐頭阻抗值，樁尖上部之上下界限值訂為該範圍平均值之 ±30%，樁尖之下部則僅規定平均值之 ±30% 為上限值。

分別利用上述三種方法並應用與各試驗樁最接近之電子錶試驗資料來計算基樁之極限承載力。由於鋼管樁 TP4 於試樁時已呈土壩極限破壞情形，且該樁又裝設 12 個應變計，可計算各土層極限摩擦力分布情形，將之應用於検核並修正 LCPC 之計算係數，使推估之摩察力與實際試樁結果之極限摩擦力分布情形接近，以求能符合理地實際情形。因此比較後發現所推估之極限摩擦力大多偏低，若將基樁於中等緊密砂土中計算極限摩擦力所除之計算係數調整至與疏鬆砂土相同，緊密砂土調降四分之一，並將黏性土壩之計算係數調低一半則其推估之各土層極限摩擦力與實際試樁結果相近。以此調整後之計算係數推估 TP6 之極限承載力，及用相同調整情形推估預力混凝土樁 TP1，TP2 和 TP3 之極限承載力，發現頗為適當，其結果詳見表三和圖四至圖八。

<table>
<thead>
<tr>
<th>試驗樁</th>
<th>電子錶</th>
<th>LCPC 方法</th>
<th>DM7 方法</th>
<th>de Ruiter 方法</th>
<th>試樁結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>編號</td>
<td>編號</td>
<td>Qp</td>
<td>Qp</td>
<td>Qax</td>
<td>偏差</td>
</tr>
<tr>
<td>TP1</td>
<td>CU5-3</td>
<td>502</td>
<td>37</td>
<td>540</td>
<td>-5%</td>
</tr>
<tr>
<td>TP2</td>
<td>CU6-3</td>
<td>562</td>
<td>128</td>
<td>685</td>
<td>-19%</td>
</tr>
<tr>
<td>TP3</td>
<td>CU6-5</td>
<td>495</td>
<td>94</td>
<td>589</td>
<td>+5%</td>
</tr>
<tr>
<td>TP4</td>
<td>CU5-9</td>
<td>329</td>
<td>124</td>
<td>453</td>
<td>+7%</td>
</tr>
<tr>
<td>TP6</td>
<td>CU5-10</td>
<td>371</td>
<td>146</td>
<td>517</td>
<td>-3%</td>
</tr>
</tbody>
</table>
圖四 LCPC 方法推估預力混凝土樁承載力
與TP1 試樁結果比較

圖五 LCPC 方法推估預力混凝土樁承載力
與TP2 試樁結果比較

圖六 LCPC 方法推估預力混凝土樁承載力
與TP3 試樁結果比較

圖七 LCPC 方法推估預力混凝土樁承載力
與TP4 試樁結果比較
五、中部基地電子銑貫入試驗結果之應用

由前節所述之LCPC方法和相同的計算極限摩擦力係數推估台中港附近一大型
基地之基樁承載力，並與該基地試樁結果
做一比較。根據地質調查資料顯示，該基
地至少在深度150公尺以內均為地質史上
所稱之現代沖積層，地層主要為粉質砂、
砂質粉土和粉質粘土交互出現，且各層中
夾層頗多，變化複雜，其簡化土層分佈及
工程特性參數如表四所示。基地共進行預
力混凝土樁三支，鋼管樁三支以五組支承
力試驗，預力混凝土樁外徑60公分，壁厚
10公分，長度54公尺（PC1、PC2及PC3）
，鋼管樁一支外徑60公分，壁厚1.6公分，
長度54公尺(SP1)，另一支外徑80公分，壁
厚1.9公分，長度54公尺（SP2），然因部份
電阻率試驗深度較淺，僅PC3和SP2試驗槽
深的接近電阻率試驗深度較適合推估，即
PC3附近之DD-3和SP2附近之DD-10電阻率
試驗結果，該二電阻率試驗結果圖10所示。
其中PC3打樁前基質已開挖約2.7公尺。

試樁前後分別進行PDA測定及
CAPWAP初打及重打分析，初打時使用
DELMAG D80 槽樁，重打時則使用
DELMAG D100 槽樁，打樁公式則採用
Poulos & Danis (1980) 所提公式中之四個
常用公式，即 Hiley, Janbu, Danisa 和
Gates 等公式一併予以分析比較。

打樁公式，CAPWAP分析和LCPC方法
推估之基樁承載力分別如表五及表六所示。
打樁公式和CAPWAP 初打分析結果依
然偏低，CAPWAP 重打分析雖然提高不
少，但可能仍因基樁不易打動尚未達塑性
破壞性分析結果仍較試樁低約30%。然而
LCPC 方法所推估PC3 極限承載力較試

表四 中部基地簡化土層表

埋深層次	高程	深度	土層狀況說明	N 值	\(Y_r\) t/m³	\(\gamma_{w}\) t/m³	\(\phi\) deg	\(C_s\) t/m²	\(S_{dr}\) t/m²	\(E_r\) t/m²	\(m_e\) x10^{-3}	\(C_r\) x10^{-3}	
I	0.0	2.9	粉土質黏砂	14	1.82	14	0	34	-	3900	-	-	-
	2.9	6.7	粉土質黏砂	8	1.93	21	0	33	-	3900	-	-	-
	6.7	15.0	粉土質黏土	15	1.93	24	0	35	-	4000	-	-	-
II	12.2	22.8	粉土質黏砂	13	1.94	28	0	34	10	4000	7.7	12.5	-
	22.8	32.1	粉土質黏土	22	1.91	28	0	35	-	4500	-	-	-
	32.1	40.0	粉土質黏砂	16	1.89	31	0	34	13.5	4000	8.2	12.3	-
III	40.0	47.3	粉土質黏土	30	1.97	24	0	35	-	4800	-	-	-
	47.3	49.8	粉土質黏砂	20	1.94	27	0	34	13.5	4500	8.2	12.3	-
IV	49.8	57.4	粉土質黏土	34	2.04	19	0	35	-	6000	-	-	-
	57.4	63.7	粉土質黏砂	27	2.00	24	0	34	-	4500	10.0	12.7	-
	63.7	73.0	粉土質黏土	37	2.06	18	0	35	-	7000	-	-	-
表五 基樁極限承載力分析結果（中部工址）

| 試驗桿
編號 | 打樁
公式 | CAPWAP 初打 | CAPWAP 重打 | 試樁
結果 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PC3</td>
<td>350 350</td>
<td>304 30 334</td>
<td>- - -</td>
<td>1200</td>
</tr>
<tr>
<td>SP2</td>
<td>300 350</td>
<td>394 29 423</td>
<td>713 14 727</td>
<td>1040</td>
</tr>
</tbody>
</table>

表六 應用電子錐試驗結果推估基樁承載力（中部工址）

| 試驗桿
編號 | 電子錐
孔號 | LCPC 方法 | DM7 方法 | de Ruiter 方法 | 試樁
結果 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PC3</td>
<td>DD-3</td>
<td>865 120 985</td>
<td>1228 122 1350</td>
<td>472 106 578</td>
<td>1200</td>
</tr>
<tr>
<td>SP2</td>
<td>DD-10</td>
<td>857 252 1109</td>
<td>2414 833 3247</td>
<td>1456 406 1862</td>
<td>1040</td>
</tr>
</tbody>
</table>

樁桶低約18%左右，SP2則較試樁高約7%左右，其推估情形如圖十一及圖十二。由此可知應用前節所述之LCPC 方法推估基樁承載力對同屬沖積地層但變化複雜許多的台中港附近基地，表現仍能令人滿意，且其亦能推估不同深度或桶長之基樁承載力，對樁桶的設計可供作有力參考。

Robertson & Campanella (1988) 亦指出當基樁位於軟弱之沖積層中，應用電子錐所獲得之地層資料來推估基樁承載力，係為一極經濟之方法。另外Bustamante & Gianeselli (1982) 建議對於重大工程應進行一組或多試樁以檢核是否可用LCPC 方法中較大之摩擦力上限值。在許多情況下當確定可採用較大上限值後將可節省更多的費用。

圖十一 LCPC 方法推估預力混凝土樁承載力與PC3 試樁結果比較
六、結論

1. 經直接應用電子錶試驗結果於台灣南部和中部兩個基地，推得沉覆中之
打擊式基樁極限承載力可以獲得令人滿意的結果，以電子錶試驗的快速，
經濟頗值得推廣應用。

2. 利用錐頭阻抗值推得基樁極限承載力
之LCPC 方法，根據實際應用結果以及
國外文獻研究成果，用來推估打擊
式基樁承載力，係目前應用方法中較
佳者。

3. 打擊式基樁之側彈性承載力與端支承
力之分佈情形，可以用在側彈性載載
力應變計來測量，並確定較佳之分析
方法，國內在這方面案例甚少，宜更
進一步的推廣。

誌謝

本研究工作係引用台灣電力公司委託
亞新工程顧問公司對電廠進行地質調查、
基礎分析與試槽報告資料，此外亞新工程
顧問公司黃若穌博士，高聰忠博士，秦中
天博士及中興工程公司鄭嶽東先生和台灣
省交通處港務研究所李廷恭先生等對本文
提供寶貴意見，謹此表示特別謝忱。

參考文獻

BUSTAMANTE, M. & GIANESELLI, L. (1982),
“Pile Bearing Capacity Prediction by Means of Static Penetrometer CPT”, Proceedings
of the Second European Symposium on Penetration testing, Amsterdam.

DAVISON, M.T. (1973), “High Capacity Piles”

DE RUITER, J. and BERINGEN, F.L. (1979),

